Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 903: 166148, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37574075

RESUMO

Common beech (Fagus sylvatica) is one of the most important deciduous tree species in European forests. However, climate-change-induced drought may threaten its dominant position. The Sonian Forest close to Brussels (Belgium) is home to some of the largest beech trees in the world. This UNESCO world heritage site is famous for its high density of very large beech trees as a result of its climatic suitability, fertile soil conditions, and past management. Here we utilized tree-ring data from increment cores to investigate the growth of these old and monumental beech trees, evaluating their growth trends, response to past climate, and the effect of mast years on 39 living and 16 recently wind-thrown trees. Our analysis reveals that the sampled trees were generally sensitive to spring and summer droughts but recovered quickly after such an extreme climatic event. The growth trend of living trees has remained high and only shows a slight, statistically insignificant, decline over the past 50 years. Although the overall growth rate remains strong (BAI 50 cm2/year), the past five decades have shown strong inter-annual growth variations due to frequent and more intense droughts combined with an increased frequency of mast years. We also found notable differences in growth patterns between the living trees and those that had recently been wind-thrown. While there were no significant differences between living and wind-thrown trees in response to droughts, heatwaves, or mast years when examining year-to-year growth changes, the wind-thrown trees did exhibit considerably lower overall growth rates and a significant downward trend in growth (BAI -0.57 cm2/year). This difference in growth trends has been apparent since at least the 1980s. Overall, the findings of this study can provide valuable insights for understanding the long-term dynamics of lowland beech forests and their responses to climate change.

2.
Sci Adv ; 1(10): e1500561, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26601136

RESUMO

Climate model projections suggest widespread drying in the Mediterranean Basin and wetting in Fennoscandia in the coming decades largely as a consequence of greenhouse gas forcing of climate. To place these and other "Old World" climate projections into historical perspective based on more complete estimates of natural hydroclimatic variability, we have developed the "Old World Drought Atlas" (OWDA), a set of year-to-year maps of tree-ring reconstructed summer wetness and dryness over Europe and the Mediterranean Basin during the Common Era. The OWDA matches historical accounts of severe drought and wetness with a spatial completeness not previously available. In addition, megadroughts reconstructed over north-central Europe in the 11th and mid-15th centuries reinforce other evidence from North America and Asia that droughts were more severe, extensive, and prolonged over Northern Hemisphere land areas before the 20th century, with an inadequate understanding of their causes. The OWDA provides new data to determine the causes of Old World drought and wetness and attribute past climate variability to forced and/or internal variability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...